Automated Fault Measurement (AFM) in ProVAL

By
George Chang, Transtec Group
Abdenour Nazef, FLDOT
James Watkins, MSDOT
Steve Karamihas, UMich
WORK ZONES NEED OUR UNDIVIDED ATTENTION.

TAKE CARE OUT THERE. OVER 700 PEOPLE WERE KILLED IN WORK ZONE CRASHES LAST YEAR.
Acknowledgement

• FHWA
 – Bob Orthmeyer

• MSDOT
 – James Watkins, Cindy Smith, Grady Aultman, Alan Hatch, Alex Middleton, and Marta Charria

• FLDOT
 – Abdenour Nazef, Alex Mraz, and etc.

• U Michigan
 – Steve Karamihas
What is ProVAL AFM

• **Automated Fault Measurement** based on profile data
• FHWA HPMS requires joint fault data
• Implement revised AASHTO R36 “Standard Practice for Evaluating Faulting of Concrete Pavements”
Challenges for AFM - Pavements

- Filled joints
- Closed joints
- Spalled joints
- Curl/warp features
- Cracks and other distresses/patches
- Joint spacing patterns
- Skewed joints
- Grade
Challenges for AFM - Profiles

- Repeatability/accuracy
- Fault validation tests with physical devices
- Sampling intervals
- Repeated profile runs
- DMI drifts
Revised AASHTO R36-04

• Grade Adjustment (physical devices)
• Automated procedure (profiles)
• Validation devices (automated procedure)
Physical Fault Devices

Georgia Fault Meter

Courtesy of FDOT
Adjustment for Grades

\[F = (L_2 - L_3) + (L_2 - L_3) \times \frac{B}{A} \]
Profile Requirements

• Repeatability and Accuracy requirements (AASHTO PP49)
• Fault validation with physical devices
• No additional pre-filtering
• Collect profiles at both wheel tracks
• Max sampling intervals
 – Basic level: 1.5” (38 mm)
 – Advanced level: 0.75” (19 mm)
Candidate Field Validation Devices

MS DOT

Top View

Side View

Retractable wheel

Handle

Transducer

B = 12"

L1 L2 L3

A = 18"

B1 = 6"

B2 = 6"
Candidate Field Validation Devices

FL DOT

0.24"

48"
ProVAL AFM

- Multiple profiles
- Joint locations ID
- Edit joint locations
- Compute faults
- Individual faults and segment summary
Joint ID Methods

- Downward Spike (SMK, FLDOT)
- Step (MSDOT)
- Curled-Edge
Downward Spike Detection

- Anti-smoothing filtering
- Normalize the filtered profile (/RMS)
- Detect profile spikes (-4.0)
- Screen joint locations
Step Detection

- Deduct profile elevations between consecutive data points
- Detect large step (0.08 in.)
- Screen joint locations
Curled-Edge Detection

- Bandpass filtering
- Rolling straightedge simulation
- Detect high RSE (0.12”)
- Screen joint locations
Joint ID Methods Selection

• **Downward Spike Detection**
 - Shorter sampling intervals
 - Downward spikes present

• **Step Detection**
 - Apparent faults present

• **Curled-Edge Detection**
 - Noticeable slab curling and warping
Joint ID Methods Selection

- Downward Spike
Joint ID Methods Selection

• Step
Joint ID Methods Selection

- Curled-Edge
Fault Computation

- Crop a profile segment
- Separate profile slices
- Least-square fits
- Compute faults
Profile Slices
Fault Computation

![Graph showing elevation vs. normalized distance with profiles and fitted shapes for approach and leave.]
ProVAL AFM Inputs
ProVAL AFM Joint Faults

Graph: US49ES_NOF_01 - Left Elevation

- Distance (ft)
- Faulting (in)

Faulting ranges from -0.2 to 0.6
ProVAL AFM Joint Faults
Summary
Save Lives with ProVAL AFM

Please Slow Down My Dad Works Here